Karolak-Wojciechowska, J., Kwiatkowski, W. \& KiećKononowicz, K. (1989). Acta Cryst. C45, 1467-1469.
Karolak-Wojciechowska, J. \& Kieć-Kononowicz, K. (1991). In preparation.
Kieć-Kononowicz, K., Zejc, A., Mikołajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. \& Wieczorek, M. (1980). Tetrahedron, 36, 1079-1087.
Kieć-Kononowicz, K., Zejc, A., MikoŁajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. \& Wieczorek, M. (1981). Tetrahedron, 37, 409-415.

Kieć-Kononowicz, K., Zatorski, A. \& KarolakWojCiechowska, J. (1989). Phosphorus Sulfur Silicon, 42, 191-199.
Kolasa, K., Kleinrok, Z., Pietrusiewicz, T., Czechowski, G., Kieć-Kononowicz, K. \& Zejc, A. (1989). Pol. J. Pharmacol. Pharm. 41, 377-382.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 1259-1261

Structure of (R)- $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-[1, 1^{\prime}-binaphthalene]-2,2'-diamine

By Livia Franzini and Carlo Rosini
Centro di Studi CNR Macromolecole Stereordinate ed Otticamente Attive, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
and Marco Pasero
Dipartimento di Scienze della Terra, Universita di Pisa, Via S. Maria 53, I-56126 Pisa, Italy

(Received 27 June 1990; accepted 4 October 1990)

Abstract

C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2}, M_{r}=340 \cdot 5\), tetragonal, $I 4_{1}, a=$ 11.872 (2), $c=13.746$ (3) $\AA, V=1937.5$ (5) $\AA^{3}, Z=$ $4, D_{x}=1.17 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=$ $0.63 \mathrm{~cm}^{-1}, F(000)=728$, room temperature, $R=$ 0.043 for 736 reflections with $I>3 \sigma(I)$. The dihedral angle between the planes of the naphthylic rings is $71 \cdot 2(1)^{\circ}$. The N atoms in the dimethylamino groups are almost $s p^{2}$ hybridized.

Introduction. Structural studies on C_{2}-symmetric 1,1 '-binaphthylic compounds have received a great deal of attention in the last few years owing to their relevance in asymmetric synthesis (Noyori \& Takaya, 1985; Noyori, 1989). Their conformation has been studied in solution by optical methods like circulardichroism spectroscopy (Mason, Seal \& Roberts, 1974) and liquid-crystal techniques (Gottarelli, Spada, Bartsch, Solladiè \& Zimmermann, 1986), and in the solid state by X-ray analysis (Akimoto \& Iitaka, 1969; Harata \& Tanaka, 1973; Kuroda \& Mason, 1981; Pauptit \& Trotter, 1981, 1983). We report here the molecular structure of $(R)-N, N, N^{\prime} N^{\prime}-$ tetramethyl-[1,1'-binaphthalene]-2,2'-diamine, a new 1,1 '-binaphthylic compound whose potential as a chiral ligand is now being investigated (Salvadori, Rosini \& Franzini, in preparation).

Experimental. The title compound was prepared from (R)-[1, 1^{\prime}-binaphthalene $]-2,2^{\prime}$-diamine according to the method described by Benson, Cai, Colon,

Haiza, Tokles \& Snyder (1988). Pyramidal (101) yellow crystals were obtained by recrystallization from toluene. A crystal, dimensions ca $2 \times 1 \times$ 0.5 mm , was chosen for the intensity data collection which was carried out on an Ital Structures fourcircle automatic diffractometer using graphitemonochromated Mo $K \alpha$ radiation. Preliminary Weissenberg photographs showed Laue symmetry and systematic absences consistent with space group I4. The unit-cell parameters were derived through least-squares fitting of 2θ values of 30 reflections (13 $<\theta<21^{\circ}$). 1876 reflections measured with $3 \leq \theta \leq$ $25^{\circ}, h 0$ to $14, k 0$ to $14, l-16$ to $16, \omega$-scan mode, scan width $1 \cdot 6^{\circ}$, scan speed $2.5^{\circ} \mathrm{min}^{-1}$; no significant variation in the intensity of one reflection (226) monitored every 60 measurements; Lorentz and polarization corrections; Friedel opposites merged neglecting the contribution of anomalous scattering, thus obtaining a set of 736 unique reflections with I $>3 \sigma(I)$; absorption correction by DIFABS (Walker \& Stuart, 1983), correction factors in the range $0 \cdot 78-1 \cdot 14$. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1986) and refined on F with SHELX 76 (Sheldrick, 1976). The atomic scattering factors were those incorporated in SHELX76. Final $R=0.043, u \cdot R=0.033 \quad[w=1 /$ $\left.\sigma\left(F_{o}\right)^{2}\right], S=4 \cdot 76$. Anisotropic thermal parameters for all non-H atoms, methyl H -atom positions constrained using the AFIX option of SHELX76; 147 variables, max. Δ / σ in the final least-squares cycle

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors (\AA^{2}) with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C(1)	-0.0300 (3)	0.4448 (3)	0.0814 (4)	0.039 (1)
C(2)	-0.1066 (3)	0.4195 (3)	0.0093 (4)	0.046 (2)
C(3)	-0.1548 (3)	$0 \cdot 3097$ (4)	0.0050 (4)	0.049 (2)
C(4)	-0.1293 (4)	$0 \cdot 2300$ (4)	0.0721 (4)	0.048 (2)
C(5)	-0.0277 (4)	0.1699 (4)	0.2182 (4)	0.050 (1)
C(6)	0.0472 (4)	0.1924 (4)	$0 \cdot 2910$ (5)	0.057 (2)
C(7)	0.0999 (4)	0.2983 (4)	$0 \cdot 2955$ (4)	0.053 (2)
C(8)	0.0760 (3)	0.3795 (4)	$0 \cdot 2285$ (4)	0.045 (2)
C(9)	-0.0027 (3)	$0 \cdot 3604$ (3)	0.1521*	0.037 (1)
C(10)	-0.0528 (3)	0.2522 (3)	0.1474 (4)	0.039 (1)
N	-0.1381 (3)	0.5002 (3)	-0.0608 (3)	0.066 (1)
$\mathrm{C}(11)$	-0.1960 (6)	0.5986 (5)	-0.0294 (5)	$0 \cdot 107$ (3)
C(12)	-0.1722 (9)	0.4607 (6)	-0.1565 (4)	0.143 (4)
* Held fixed to define the origin.				

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{C}(1)^{\prime}$	$1 \cdot 492$ (5)	$\mathrm{C}(5)-\mathrm{C}(10)$	$1 \cdot 411$ (7)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.378 (7)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 406$ (7)
$\mathrm{C}(1)-\mathrm{C}(9)$	1.433 (5)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.363 (7)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 423$ (6)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.424 (5)
$\mathrm{C}(2)-\mathrm{N}$	1.409 (6)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 417$ (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.356 (7)	$\mathrm{N}-\mathrm{C}(11)$	1.422 (7)
$\mathrm{C}(4)-\mathrm{C}(10)$	$1 \cdot 402$ (7)	$\mathrm{N}-\mathrm{C}(12)$	$1 \cdot 454$ (7)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 365$ (8)		
$\mathrm{C}(1)^{\prime}-\mathrm{C}(1)-\mathrm{C}(2)$	120.4 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.5 (4)
$\mathrm{C}(1)^{\prime}-\mathrm{C}(1)-\mathrm{C}(9)$	120.4 (3)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	122.5 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	119.0 (3)	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	120.5 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.6 (4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.0 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	121.2 (3)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(5)$	$121 \cdot 1$ (4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}$	$119 \cdot 1$ (4)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(9)$	118.4 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.4 (4)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$120 \cdot 5$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	121.0 (4)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(11)$	118.6 (4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	120.5 (4)	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(12)$	118.2 (4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.8 (5)	$\mathrm{C}(11)-\mathrm{N}-\mathrm{C}(12)$	$113 \cdot 9$ (5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.7 (5)		

0.06 for non-H atoms; max. and min. heights in the final difference Fourier synthesis $0 \cdot 14$ and $-0.14 \mathrm{e} \AA^{-3}$.

Discussion. The final atomic coordinates and equivalent isotropic thermal parameters are given in Table 1.* An ORTEPII (Johnson, 1976) drawing of the molecule with atom labelling is shown in Fig. 1. Bond lengths and bond angles are listed in Table 2; geometrical calculations were performed using PARST (Nardelli, 1983). The asymmetric unit is half of the molecule; the other half is generated by rotation around a twofold axis which bisects the $C(1)-C(1)^{\prime}$ bond. The bond lengths and bond angles within the naphthyl group are in agreement with

[^0]those found in naphthalene and its derivatives. The naphthalene rings are essentially planar, the largest displacement of any non-H atom from the leastsquares plane being $0.017(5) \AA$. The maximum torsion angle within the naphthalene ring is $2.3(6)^{\circ}$, the average value is $0.9(7)^{\circ}$. The distance of the N atom from the least-squares plane is 0.049 (4) \AA. The methyl groups are positioned on opposite sides of the naphthalene plane and their orientation can be defined by the torsion angles $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(11)$ $\left[116.0(5)^{\circ}\right]$ and $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(12)\left[-28.7(7)^{\circ}\right]$. The values of the three angles $\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(11)$, $\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(12)$ and $\mathrm{C}(11)-\mathrm{N}-\mathrm{C}(12)$ indicate the prevailing $s p^{2}$ hybridization of the N atoms. The dihedral angle between the two naphthyl groups is $71 \cdot 2$ (1) ${ }^{\circ}$ (Fig. 2). This is the smallest dihedral angle among those measured in optically active $1,1^{\prime}$ -binaphthylic compounds whose values range from 77° for (+)-2, 2^{\prime}-dihydroxy-[1, 1^{\prime}-binaphthalene]-3, 3^{\prime} -dicarboxylic acid dimethyl ester bromobenzene solv-

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atom-labelling scheme.

Fig. 2. View of the molecule showing the angle between the two naphthalene rings.
ate to 103° for (-)-1, 1^{\prime}-binaphthyl (Akimoto \& Iitaka, 1969; Harata \& Tanaka, 1973; Kuroda \& Mason, 1981; Pauptit \& Trotter, 1981, 1983). The present dihedral angle is comparable to that [74.4 (2) ${ }^{\circ}$] found in $\left[(R)-2,2^{\prime}\right.$-bis(diphenylphosphino)-1,1'-binaphthalene] (8,9,10-trinorborna-2,5-diene)rhodium(I) perchlorate (Toriumi, Ito, Takaya, Souchi \& Noyori, 1982) where the binaphthyl derivative is coordinated to the metal atom.

As previously shown (Harata \& Tanaka, 1973), bulky substituents at the $2,2^{\prime}$ positions give rise to large dihedral angles. However, in this case the twist observed between the plane of each $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ and the plane of the corresponding naphthalene ring can constitute a more efficient way of reducing the steric repulsion than the increase of the dihedral angle between the two naphthalenic rings, also taking into account that for large dihedral angles steric repulsion between an $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ group of a naphthalene moiety and the other aromatic ring can become important.

The authors wish to thank Professor S. Merlino and Dr F. Marchetti for helpful discussions.

References

Акімото, H. \& Ittaka, Y. (1969). Acta Cryst. B25, 1491-1500.
Benson, S. C., Cai, P., Colon, M., Haiza, M. A., Tokles, M. \& Snyder, J. K. (1988). J. Org. Chem. 53, 5335-5341.
Gottarelli, G., Spada, G. P., Bartsch, R., Solladiè, G. \& Zimmermann, R. (1986). J. Org. Chem. 51, 589-592.
Harata, K. \& Tanaka, J. (1973). Bull. Chem. Soc. Jpn, 46, 2747-2751.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuroda, J. \& Mason, F. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 167-170.
Mason, S. F., Seal, R. H. \& Roberts, D. R. (1974). Tetrahedron, 30, 1671-1682.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Noyori, R. (1989). Chem. Soc. Rev. 18, 187-208.
Noyori, R. \& Takaya, H. (1985). Chem. Scr. 25, 83-89.
Pauptit, R. A. \& Trotter, J. (1981). Can. J. Chem. 59, $1149-$ 1152.

Pauptit, R. A. \& Trotter, J. (1983). Can. J. Chem. 61, 69-71.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Toriumi, K., Ito, T., Takaya, H., Souchi, T. \& Noyori, R. (1982). Acta Cryst. B38, 807-812.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 1261-1263

Structure of a Chiral Amide Derived from a (Vinylketenimine)tricarbonyliron(0) Complex

By Nathaniel W. Alcock,* Christopher J. Richards and Susan E. Thomas
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England

(Received 15 August 1990; accepted 5 October 1990)

Abstract

R)-2-Ethyl-2-methyl-4-phenyl- $\mathrm{N}-[(S)$-1-phenylethyll-(E)-3-butenamide, $\quad \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}, \quad M_{r}=$ 307.4, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=10 \cdot 071$ (7), $b=$ $19 \cdot 218(15), c=19 \cdot 406(14) \AA, \quad V=3756 \AA^{3}, \quad Z=8$, $D_{x}=1.09 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$, $\mu($ Mo $K \alpha)=0.6 \mathrm{~cm}^{-1}, F(000)=1328, T=290 \mathrm{~K}, R$ $=0.063$ for 1600 unique observed [$I / \sigma(I) \geq 2.0$] reflections. The two independent molecules show significant conformational differences, principally involving the ($\mathrm{C}=\mathrm{O}$) - C bond adjacent to the amide group. The molecules are linked into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Introduction. The reaction of a homochiral (vinylketenimine)tricarbonyliron(0) complex with ethyl-

[^1]lithium has been shown to produce only one diastereoisomer of the β, γ-unsaturated amide (I) in $>95 \%$ purity (Alcock, Pike, Richards \& Thomas, 1990). The crystal structure of this amide has been determined to establish the stereospecificity of the reaction. (-)-(S)- α-Methylbenzylamine was used as the starting material for the preparation of the iron complex and the retained chiral centre provided a reference point for identifying the chirality of the new quaternary carbon centre formed in the reaction.

(I)

[^0]: * Lists of structure factors, anisotropic thermal parameters for non-H atoms, and positional and thermal parameters for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53623 (7 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * To whom correspondence should be addressed.

